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Developers of games and simulations are striving to increase realism in
both the appearance and the behavior of their computer-generated char-
acters. The physical appearance of characters in games and simulations
enhances participants’ sense of presence and immersion, but the way the
characters behave may matter more (Bailenson et al., 2005; Garau, Slater,
Bee, & Sasse, 2001). Interest in imbuing computer-generated characters
with human-like behavior is present and growing.

This interest approaches an imperative when it comes to generating
friendly, opposition, and neutral characters for simulations used in mil-
itary training. One side will implement a tactic that the other side will
successfully counter, requiring the first side to adjust their tactics, which
will affect what the other side does next, and so on. This process creates
immersing, problem-solving, decision-making environments that can test
the limits of both human and machine cognition. It mimics the poorly
structured, rapidly shifting, ill-defined, and time-constrained environ-
ments that are typical of real-world problem solving and decision making
(Cannon-Bowers, Salas, & Pruitt, 1996). Interest in cognitively realistic
characters may be equally imperative in simulating environments for
- nonmilitary applications, such as those developed for problem solving
and decision making in urban planning, economic management, and of
course, multiuser fantasy games.
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This chapter reviews models that are available for representing human
cognitive behavior in games and simulations. It identifies and briefly dis-
cusses those models that seem particularly appropriate for representing
and assessing human problem-solving capabilities.

Games and Simulations

Computer-based simulations appeared with the first computers that could
support them and, for that matter, were a prime motivator for their devel-
opment (Goldstine, 1972). Simulations intended for education and train-
ing appeared almost as soon. Perhaps the first example of computer-based
simulation training grew out of the Air Force SAGE (Semi-Automatic
Ground Environment) system (Rowell & Streich, 1964). The early 1950s
Whirlwind I project demonstrated that computers using radar data to track
aircraft could serve as an early warning air defense system for the entire
North American continent. Based on this evidence and motivated by the
perceived exigencies of the Cold War, the Air Force quickly responded by
building SAGE, a system of 20 computer-based, linked direction centers
for tracking aircraft and controlling aircraft interceptions.

On the human factors side, SAGE was a large, geographically dispersed
system requiring intense human-computer interactions, complex and
frequent decision making, and close cooperation among many opera-
tors working in relative psychological isolation (Rowell & Streich, 1964).
A training system, which the Air Force imaginatively called STP (System
Training Program), was embedded in SAGE to train its operators in the
mid-1950s. STP included simulated radar inputs, nonradar track inputs,
an authoring system for simulation scenarios, a recording capability, and a
data reduction feedback feature used for after-action reviews.

STP was a multiplayer training simulation. It served as a prototype and
progenitor for a host of military and civilian computer-based simulation
systems, as S. R. Mayer (1970), Olsen and Bass (1982), and even Fletcher
and Rockway (1986) have suggested. It was the precursor of today’s net-
works of military simulators that engage each other on electronic battle-
fields (Alluisi, 1991).

Whether STP was a multiplayer game as well as a simulation may depend
on the perceptions of its users. Distinctions between games and simulations
are varied and a matter for continuing discussion. For the purposes of this
chapter, games are considered to be simulations that emphasize engaging,
immersing entertainment, often at the expense of realism, in contrast to
other simulations, which emphasize realism often at the expense of enter-
tainment. Both games and simulations may involve competition, but that
seems more central to games than to simulations.
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Multiplayer games have been available for some time, certainly since
the advent of multiuser time-sharing systems in the 1960s. Games such
as Moonwar' and Dogfight hosted on the University of Illinois PLATO
system evolved into role-playing games such as Dungeon, which appeared
in 1975 and was hosted on time-sharing operating systems supported by
PDP-10 mainframes. In about 1978, Dungeon was modified at Essex Uni-
versity in the United Kingdom to support a variety of users playing differ-
ent roles and was renamed Multi-User Dungeon or MUD (Bartle, 1990). It
was immediately and extensively popular.

Personal computing, the Internet, and the World Wide Web have inten-
sified the evolution of games. Even though Dungeon used text commands
to control game action, it included line-of-sight displays to simulate what
players in different roles might see. Graphics displays in games and sim-
ulations continued to evolve with the development of computer display
technology. The development of modern graphics-based, role-playing,
multiplayer games have been with us since the mid-1990s, when Electronic
Arts released Ultima Online. Sony Online’s Everquest, released in 1999,
may have been the first major hit for multiplayer games, with more than
400,000 subscribers by the end of the year paying $10 per month to play.
It was soon followed by Ultima Online, Dark Age of Camelot, Star Wars
Galaxies, World of Warcraft, and so on (Robar, 2004). The market for these
games continues to grow. By 2005, World of Warcraft had over 1 million
players in North America-and more than 5 million players worldwide.

Many games and simulations include characters depicted in the action
but operating independently under computer control. The quality of the
game or simulation depends to a substantial extent on the cognitive behav-
ior and responses of these automated characters. Even when characters
operate under some combination of human-computer control, there may be
significant cognitive components under computer control, especially when
the human operator is managing groups or teams of individual characters.
In all cases, the underlying computer capabilities for representing cogni-
tion are essential in providing characters that display credible behavior.
Many games and simulations include them either implicitly or explicitly.

Games and simulations, multiplayer and otherwise, have significant
advantages over other means (e.g., explicit paper-and-pencil testing)
for assessing cognitive capabilities (Bennett, Jenkins, Persky, & Weiss,
2003; Drasgow & Mattern, 2005; Fletcher, 2002; Garmine & Pearson,
2006). They employ rich and immersing environments that can take full
advantage of the timing, multimedia display, multimodal command, and

! Moonwar was lesson Omoon on the PLATO system according to one expert, who claims
not have spent any time playing it.
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instant scoring capabilities of computer-assisted assessment. They can do
so continuously and unobtrusively, and they can yield more detailed and
complete representation of what users know and, especially, can do than
more traditional assessment methods. They may well take us to a future in
which explicit testing is minimized while the extent and depth of assess-
ment is significantly enhanced.

Games, Simulation, and Cognition

Empirical research is investigating the ability of computer games to
increase cognitive capabilities (Green & Bavelier, 2003; Hayes, 2005; O’Neil,
Wainess, & Baker, 2005; Tobias & Fletcher, in press). Some of these stud-
ies indicate that cognitive capabilities can be reliably measured by games
themselves. Subrahmanyam and Greenfield (1994) showed that general
spatial capabilities such as anticipating targets and extrapolating spatial
paths could be assessed in a computer game (Marble Madness). Greenfield,
deWinstanley, Kilpatrick, and Kaye (1994) found that general attention
skills such as those dealing with requirements for divided visual attention
could be assessed (and improved) by playing video games. Hong and Liu
(2003) identified three cognitive strategies (trial and error, heuristic, and
analogical thinking) used by computer game players and found that these
strategies could be used to assess players’ expertise.

In discussing cognitive models in simulations and games, Wulfeck
(personal e-mail communication, January 17, 2006) asked, “Is there any
indication that attention skills or cognitive strategies transfer to any other
tasks?” This is a key question. However, research on the transfer of cog-
nitive skills or strategies acquired in games to real-world tasks remains
fragmentary, mixed, and scarce.

Forinstance, Gopher, Weil, and Bareket (1994) found that groups trained
for 10 hours on the Space Fortress II game demonstrated performance in
a complex and dynamic aircraft flight environment that was superior to
an ability-matched control group not exposed to the game. They attrib-
uted the success of the game groups to their learning how to cope with
attention demands and high cognitive load. On the other hand, Hart
and Battiste (1992) found that assigning trainees to an off-the-shelf game
(Apache Strike Force), also dealing with flying, had no transfer effects.
Fletcher and Tobias (2006) went so far as to suggest that the physical simi-
larities of game and flight conditions do not affect transfer as much as the
similarities in attention and cognitive load demands shared by the.game
and actual flight.

Clearly, the degree to which basic cognitive capabilities acquired and
assessed in games and simulations transfer to the performance of real-world
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skills and tasks remains to be determined. Fortunately, this chapter avoids
this issue by limiting its focus to the representation of cognition in games
and simulations in the first place.

The Role of Cognitive Models

Cognitive models concern such processes as human perception, memory,
learning, decision making, and, notably, problem solving. They are used
to populate games and simulations with synthetic but realistic characters,
model the desired end state of learners in instructional applications, and
assess the current competencies of users in instructional, decision-aiding,
and entertainment applications. Models of current and targeted cognitive

 end states can help manage users’ progress toward achieving instructional
P g [

objectives, ensure that games and simulations adjust to participant’s lev-

- els of ability, and provide hints for partial solutions and critiques of com-

pleted activities.

In many applications, the performance of participants may be reflected
(or overlaid) onto empirically based models of human cognition as the
participants interact with games and simulations. This approach has been
successfully used in technology-based instruction starting early (e.g.,
Fletcher, 1975; Sleeman & Brown, 1982) and continuing into the present
(Lovett & Anderson, 2005). Use of underlying cognitive models extends ad
hoc game and simulation approaches into formal constructs of cognition.
Doing so not only yields more comprehensive and generalizable knowl-
edge of players’ cognitive processes and abilities but also provides feed-
back to the models themselves. It will help verify our concepts of human
cognition through prediction and exquisitely detailed observation of play-
ers’ performance. By closing this feedback loop, assessment of cognitive
processes and abilities in games and simulations may reveal significant
aspects of human cognition that have heretofore been obscured by our lim-
ited modalities for assessment. Assessment using games and simulations
could transcend its current novelty status by both providing more power-
ful capabilities for assessing cognitive skills and substantially increasing
our understanding of human cognitive processes and their implications
for human performance.

Use of games and simulations in assessment is as applicable to teams as
to individuals (e.g., Fletcher, 1999; O’Neil, Chung, & Brown, 1997). Mem-
bers of problem-solving teams must, as Sternberg and Davidson (1992)
emphasized, form their own models of the problem that is to be solved.
They must also, as Rouse, Cannon-Bowers, and Salas (1992) emphasized,
develop a mental model of other participants’ knowledge and skill (perhaps
by cross training team members in each other’s roles and responsibilities)
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and a shared mental model of the team’s goal and subgoal states. In addi-
tion, they must develop a shared model of the current situation — a need
that has been emphasized by commentators ranging from deGroot (1965)
and Chase and Simon (1973) to the current interest in situation awareness
(e.g., Endsley, 1995). Finally, teams, and team members, must review the
success of their plans, and just as important, they must respond to this
feedback by devising new models of the goal, subgoal, and current states.
A benefit of using games and simulations to assess team problem solving
is that in all these activities mental models and the cognitive processes
underlying them are to some extent made visible and explicit through the
observable decisions, communications, and actions of team members.

Games and simulations can record all decisions and actions observed
from participants’ communications, keyboard inputs, and clickstreams.
The models of participant knowledge, assumptions, and hypotheses that
are inferred from these extensive and detailed records can then be reflected
against the “ground truth” known by the system. The outcomes in games
and simulations, such as those involving tactics, strategies, and opposing
players, may turn out to be unfavorable because of factors over which the
participants have no control. If the models are in accord with the true state
of the system, then we may be able to assume that participants are taking
the right actions for the right reasons, regardless of outcome. By providing
a window into the internal cognitive structures and processes a team or
team member may be using to solve a problem, cognitive models allow us
to distinguish between good problem solving and good luck and between
poor problem solving and bad luck.

Modeling Human Behavior

The capabilities of games and simulations to assess cognitive capabilities
such as problem solving are embryonic, but the ability to enhance them
significantly by using models of human cognition now seems at hand.
This work has already begun based on research and development in cogni-
tion and efforts to model it, which, in the world of games and simulation,
typically comes under the heading of human behavior representation.
Modeling is increasingly used in simulations for training and education,
analyzing decision alternatives, representing characters and avatars, and
designing, developing, and acquiring materiel assets. It appears, implicitly
and explicitly, in both military and nonmilitary applications. Its move-
ment into games, multiplayer and otherwise, seems equally at hand.

We are fortunate that a number of systematic reviews and analyses of
these models have appeared. Pew and Mavor (1998) reviewed 11 such mod-
els, Ritter et al. (2002b) reviewed 7 models not covered by Pew and Mavor,
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and Morrison (2003) reviewed 19 such models. Morrison’s review updated
the earlier reports and provided additional analyses.

These models can be implemented in digital form — as computer algo-
rithms. Doing so for any model is a significant demonstration. If the model
can be represented in an algorithm, its validity can be tested by comparing
its predictions with the observed performance of human participants in
games, simulations, and elsewhere. If the model cannot be represented in
an effective procedure such as an algorithm, then there is reason to ques-
tion its adequacy as a model.

Models are especially useful in providing diagnostic as well as summa-
tive information. They can provide precise information on individual or
team cognitive capabilities for use in devising individually tailored training
programs. They can also be used to demonstrate the validity of the model
itself, suggesting where it must be modified to account for a more compre-
hensive range of human cognition. Scientific and technological advances
may arise from information of this sort, as well as substantial improve-
ments in our ability to educate, train, and assist learners and users.

Most of these models are systems of if-then, condition-response rules,
or productions, that simulate cognitive structures and processes. The 19
models Morrison (2003) reviewed are summarized in Table 6.1.

Table 6.2 again summarizes the 19 models by identifying the cognitive
functions they cover. Table 6.2 indicates which models, in our judgement,
explicitly represent one or more of the following cognitive processes: per-
ception, psychomotor performance, attention, situation awareness, short-
term memory, long-term memory, learning, decision making, problem
solving, cognitive workload, emotional behavior, and social behavior.

To be indicated in Table 6.2 as present, the documentation and other lit-
erature associated with the model had to describe the model’s capabilities
specifically for that particular function. No inferences were made about
the model’s potential capabilities to emulate the function with modifica-
tion. Advocates may reasonably argue that the model could demonstrate
additional functions with appropriate modifications. In any case, problem-
solving functions are represented in only five of the models. This finding
suggests that even though most of these models may be good at reacting to
expected situations (i.e., situations for which they are programmed), they
may not be so good at adapting to novel, unanticipated situations.

Assessment of Problem Solving

Problem solving and decision making are required when an individual or
a group of individuals must achieve a goal, or a combination of compet-
ing goals, but are uncertain how to do so (R. E. Mayer & Wittrock, 1996).
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Table 6.2 Cognitive and Behavioral Functions Represented in Models Reviewed by Morrison (2003)
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They require ingenuity and creativity on the part of the problem solvers
to understand the current situation, identify the relevant knowledge and
skills they need or possess, and transform them into actions that lead
to goal achievement. Decision making focuses on the subsidiary step of
~ identifying alternative paths of action and selecting among them, prob-
ably through a recognition-primed process as described by Klein (1989),
assessing them through a form of mental simulation (Endsley, 1995; Klein,
1989), and choosing the first workable, or “satisficing” (Simon, 1956), path
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to pursue. The overall process of evaluating the current situation, gener-
ating solution paths, choosing a path, acting on it, and modifying it as
needed to meet changing circumstances may be described as problem solv-
ing (e.g., Miller, Galanter, & Pribram, 1960).

Most real-world problem solving is multivariate, complex, and steeped
in uncertainty. It is required in everything from designing menus to
deploying military personnel. It is a critical component of the skills needed
to ensure workforce readiness and viability in the global marketplace
(O'Neil, 1999). Assessing problem solving in environments that resemble
the real world as much as possible is a significant undertaking that seems
to require some degree of simulation combined with adequate underlying
models of both the cognitive processes required in general to solve prob-
lems and those used by specific human participants.

Five of the models used to represent human behavior listed by Morrison
(2003) and in Table 6.2 specifically address problem solving: atomic com-
ponents of thought (ACT), cognition as a network of tasks (COGNET),
concurrent activation-based production system (CAPS), PSI, and state,
operator, and result (Soar). As Morrison emphasized, yes/no judgments
do not convey the quality and extent to which these models address any
particular function, including problem solving. Accordingly, following is
a brief discussion of these five models in more detail. These comments are
based on Morrison’s review, which provides still more detail.

Atomic Components of Thought

ACT evolved from the human associative memory (HAM) model devel-
oped by Anderson and Bower (1973). HAM was a connectionist model
of semantic memory that represented Anderson’s doctoral research at
Stanford University. ACT is a synthesis of HAM and a production sys-
tem theory of memory (Newell, 1973). The first ACT model appeared in
fall 1974, and it has been continually updated since that time. The current
model, called ACT-R (R for rational), appeared in the work of Anderson
(1993). Updated versions of the ACT-R model have appeared since then
(e.g., Anderson et al., 2004).

In distinguishing between knowledge types, ACT refers to declara-
tive and procedural knowledge. It views declarative knowledge as stored
information concerning facts about the world. In ACT, this knowledge is
modeled as a semantic network, not unlike the memory representation
in HAM. In contrast, Anderson contends that our knowledge of actions
(i.e., how to do something) is quite different. This procedural knowledge
is modeled as a production system. Declarative and procedural knowledge
are held in long-term memory. These two systems communicate through
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working memory, which is not a separate memory subsystem but rather
the subset of knowledge that is currently active.

Problem solving in ACT is accomplished through analogy and example.
It may be represented by changes in activation and strength parameters in
the semantic network. Productions may not fire because activations lev-
els are below some threshold. Similarly, incorrect productions may fire
because their threshold levels are relatively high with respect to correct
productions. Activation and strength parameters also affect the latency of
responding. A major contribution of ACT is its ability to provide quantita-
tive predictions of performance time and error rates in problem solving.

ACT was originally developed to address cognitive activity and is good

. at simulating individual intellectual functions, such as problem solving.
‘" ACT-R has had several practical applications, including the development

of intelligent tutors for math and computer science aimed at secondary
education. It has also been used to model human-computer interaction
as design aid, and it has provided a framework for interpreting data from

“brain imaging. However, the ACT-R architecture does not model collec-

tive performance, which may be the next step. Anderson has stated that
he wants ACT-R to provide computer-generated forces to inhabit training
environments and games.

Cognition as a Network of Tasks

COGNET is a symbolic computational model focused on human compe-
tency. It was developed by Wayne Zachary in 1989. Its goal is “to facilitate
cognitive task analysis and description of specific work domains” (Zachary,
Ryder, & Hicinbotham, 1998, p. 16). A more recent version, COGNET-P,
was designed to model performance. It includes mechanisms for incorpo-
rating time and accuracy constraints and a metacognitive component for
control and self-awareness in carrying out cognitive processes, including
problem solving (Zachary, Ryder, & Le Mentec, 2002).

COGNET models begin with the assumption that humans are capable of
performing multiple tasks simultaneously. COGNET simulates parallel pro-
cessing with rapid attention switching by maintaining several tasks in vari-
ous states of completion but allowing only one of these tasks to execute at a
time. It is particularly useful for modeling complex time-constrained, mul-
titask situations that require performers to switch the focus of their attention
repeatedly as they do in real-world problem solving and decision making.

The COGNET internal information-processing system is intended to
apply to all tasks. It is divided into three subsystems: (a) a sensory/per-
ceptual subsystem that converts incoming physical data into symbolic
information for use in information processing; (b) an internal cognitive
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subsystem that constructs and operates a mental model of the world; and
(c) an action/motor subsystem for manipulating the external world.

The perceptual and cognitive subsystems are linked by an information
store that subsumes short-term, long-term, and working memory. Zachary
et al. (2002) do not deny that different short-term and long-term memory
effects exist; rather, they contend that the distinction between the two
types of memory stores is unnecessary to model cognitive processes.

The COGNET architecture usesa formal production-based system model
to represent all forms of task knowledge needed for problem solving. It con-
sists of (a) a network of tasks expressed as goal hierarchies for represent-
ing procedural knowledge; (b) perceptual demons that contend (“shriek”
with different amplitude) for the attention of the cognitive processor, like
Selfridge’s (1959) pandemonium model of attention; (c) a “blackboard” for
representing and organizing relevant declarative information relating to
the problem; and (d) actions for effecting change in the world.

COGNET seems best suited for contemplative, open-ended tasks that
are not strongly perceptual-motor in nature. The metacognitive con-
trol functions, together with the ability to model independent cognitive
agents, should also give COGNET the capability to model coordination
among multiple team members. Production-based task knowledge, atten-
tion switching, and the metacognitive components all appear to make
COGNET well suited for modeling complex cognitive processes such as
problem solving.

Concurrent Activation-Based Production System

CAPS was developed by Marcel Just, Patricia Carpenter, and their col-
leagues at Carnegie Mellon University. The original version of CAPS wasa
production system for modeling reading, particularly reading comprehen-
sion (Thibadeau, Just, & Carpenter, 1982). A unique aspect of the original
model was that it incorporated subsymbolic aspects (spreading activation)
into the symbolic production system representation.

Development for CAPS is continuing. A more recent version, 4CAPS, is
organized into collaborative modules, which are intended to correspond to
the functions of different cortical areas (Just, Carpenter, & Varma, 1999).
The primary output of 4CAPS is the location and amount of processing
per unit time, which is designed to predict the pattern of brain activity
recorded by technologies such as functional magnetic resonance 1mag1ng
and positron emission tomography.

CAPS makes the following assumptions about human cognition:

o Elements in working memory (facts) have value attributes (activations)
that reflect their strength or the degree to which they are believed.
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» An element can cause a production to fire if it matches the condi-
tions component of the production and the activation value exceeds
a specified threshold.

« Cognitive processing is represented by production firings, which
cause activation to be propagated. The flow of propagation proceeds
from one working memory element (called the source) multiplied by
a factor (called the weight) to another element (called the target).

+ Processing is explicitly parallel. No limit exists for the number of
productions that can fire on the same cycle, and no explicit mecha-
nism exists to resolve conflicts between productions.

+ Long-term memory exists separately from working memory.

o The total amount of activation in working memory is capped at some
specified value for each individual. This total activation can be used
to keep elements active in working memory or to propagate activa-
tion by firing productions (Just & Carpenter, 1992).

CAPS models represent central cognitive functions (e.g., comprehen-
sion) and do not include peripheral functions, such as perceptual-motor
acts. All knowledge is encoded as productions in long-term storage. No
mechanisms to acquire or modify that knowledge (i.e., learning) are
included in CAPS.

Memory structures and processes are explicitly defined in CAPS. Long-term
memory includes procedural and declarative components. Working memory,
in contrast, is exclusively declarative: It contains only facts. Forgetting is mod-
eled by decrementing the activation values of “old” elements that remain in
working memory from cycle to cycle without receiving explicit activation.

A feature of CAPS is that it represents processing capacity in a theoreti-
cally plausible and empirically valid manner. CAPS uses its capabilities to
simulate simple problem solving as a comprehension-like process in which
the declarative knowledge in working memory is matched with productions
from long-term memory. It has been applied to a problem-solving simula-
tion in which a pilot performing a preflight check is interrupted by critical
messages that must be comprehended and then either acted on or ignored.

PSI

PSIis usually presented in all capital letters but has not been defined as an
acronym. PSI is unique in focusing on the interaction of cognitive, emo-
tional, and motivational processes. It is currently under development by
Dietrich Doérner and his colleagues at the Institut fiir Theoretische Psy-
chologie der Otto-Friedrich-Universitit Bamberg. According to Bartl and
Doérner (1998), the PSI project is intended to create an intelligent, moti-
vated, emotional agent that can survive in a variety of domains.
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The central psychological construct in PSIis motivation. Motivators are
portrayed as analogous to tanks filled with liquids, which must be kept
within certain tolerance levels. When the level deviates from the ideal, a
motivator is launched to activate behaviors to restore the levels.

Bartl and Dérner (1998) sorted six motivators into three categories
of needs: (a) system needs (water and energy), intended to sustain an
organism’s existence; (b) preservation needs (pain avoidance), designed to
maintain an organism’s structures; and (c) information needs (certainty,
competence, and affiliation) with a cognitive or social basis.

Several needs can be active at once. A problem-solving, motive selection
mechanism designates a single need as the actual intention. The mechanism
selects the intention with the highest expectancy value, which is defined as
the product of the perceived probability of fulfilling the need and the level
of need. The resulting product is referred to as motive strength.

InPSI, emotions and cognitions are not separate processes. There are three
primary mechanisms for shaping or modulating cognition and motivation:

» Activation Level: The strengths of various needs lead to specific
behaviors and to an increase in general activation level, which speeds
information processing and may trigger either or both of the two
modulators described next.

» Resolution Level (RL): Perceptions are modeled as comparisons
among schemata. RL refers to the required precision of those com-
parisons. At low, general activation levels, RL is high, which results
in slow but reliable processing. At high activation levels, RL is low,
which leads to fast but inaccurate processing.

o Selection Level (SL): SL refers to the ability of PSI to change dynami-
cally the threshold needed to activate a need. This mechanism effec-
tively defends intentions against competing needs, thereby protecting
PSI against strong behavioral oscillations.

PSI treats memory as a simple log of perceptions and activities and for-
getting as a decay of that record. Elements in short-term memory are tran-
sitioned in continuous fashion to an episodic memory, and the remnants
of the record (stripped of detail) are eventually transitioned into long-term
memory. Emotions interact with memory in that records associated with
need satisfaction or with pain have a greater chance of passing to long-
term memory than do simple sequences of events.

Output from PSI includes momentary states of motives and the speed
and accuracy of simulated behavior. According to Ritter, Shadbolt, et al.
(2002), PSI can model a wide variety of learning situations, including
associative-and perceptual learning, operant conditioning, sensory-motor
learning, goal learning (i.e., remembering situations that lead to need
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satisfaction), and aversions (i.e., remembering situations or needs that
cause needs). In addition, Ritter, Shadbolt, et al. (2002) reported that PSI
includes several built-in problem-solving strategies, including hill climb-
~ing and trial and error.

' State, Operator, and Result

According to Ritter, Baxter, Avaramides, and Wood (2002), the Soar devel-
oper community stopped regarding Soar as an acronym. Hence, it is not
“usually written in all caps. Soar is perhaps the most popular model gauged
_ by the number of its proponents. As its name implies, Soar’s concept of
_ cognition involves a search through a problem space and application of
_operators to states to achieve a result.

‘Part of Soar’s popularity can be traced to the fact that it is a multifaceted
odel that addresses disparate audiences. As described by Ritter, Baxter,
.(2002), Soar provides both a unified theory of cognition and a set of
heuristics for developing theories of cognition. It includes principles and
constraints from which one can construct applied models of knowledge-
~based behavior, including problem solving.

* - Soar has its roots in work begun in the 1950s by Allen Newell, J. C.

“Shaw, and Herbert Simon to demonstrate that computers could address
~ complex problem solving. The first model produced by this group was the
logic theorist (LT), which was designed to devise proofs of geometry theo-
rems (Newell & Simon, 1956; Newell, Shaw, & Simon, 1957). Those same
researchers extended the ideas of the LT to different types of problems in
their general problem solver model (Newell, Shaw, & Simon, 1958; Newell
- & Simon, 1972).

Soar is currently under active development at various sites around the
world. Some relevant Web addresses are shown in Table 6.1. Soar develop-
ment is explicitly constrained by three general assumptions about human
cognition and behavior: (a) behavior is flexible and goal driven; (b) learn-
ing occurs continuously from experience; and (c) elementary cognitive
processes occur well within 1 second (Lewis, 2001).

Another guiding principle of Soar is that it should comprise a small
set of independent mechanisms (Rosenbloom, Laird, Newell, & McCarl,
1991). This assumption drives the model not only toward simplicity but
also toward uniformity in architecture. For instance, Soar uses a single
type of process for modeling long-term memory structure, learning, tasks,
and decision making.

Soar depicts all behavior as movement through problem spaces. A problem
space defines the states and operators that apply to the task at hand. The
knowledge required to execute tasks are modeled as productions (condi-
tion-action pairs). The conditions define access paths to knowledge stored
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in memory, whereas the actions define the memory contents themselves
(Lewis, 2001).

The course of information processing in Soar is described by the decision
cycle. Hill (1999) described the decision cycle as a four-phase iterative process:

1. Input: Input productions take information from the external world
and place the contents into working memory.

2. Elaboration: Productions in long-term memory are matched against
the contents of working memory and fire in parallel so that all rel-
evant knowledge is retrieved. Productions that fire create proposals
for actions that are evaluated in the decision phase and issue direct
commands to the motor system.

3. Decision: Proposals for action are examined, and as a result, the sys-

~ tem selects appropriate operators. If no such action is called for or
several competing actions are indicated, then Soar recognizes an
impasse, which automatxcally sets up a subgoal (creates a new space)
for resolving the impasse. If the subgoal recognizes another impasse,
then another subgoal is declared for solving it, creating a goal stack.
This process proceeds in iterative fashion until all impasses have
been resolved.

4. Output: Motor commands are executed. Resulting changes in internal
and external conditions are considered during the decision phase.

In Soar, perception is represented by encoding productions that take
data off of a perceptual buffer (called the input link) and place the results
into working memory. Sensory models are used to filter what information
is potentially perceptible.

All long-term memory (procedural, declarative, episodic) is stored as
productions. Productions are used not so much to model behavior but to
provide content addressable memory. A production’s conditions provide
associative pathways to contents contained in its action component. Long-
term memory is accessed in parallel: All relevant information is retrieved
before Soar’s decision cycle is completed. Productions can be added to
long-term memory through chunking, the acquisition of productions that
occur during the process of impasse resolution and subgoaling. No proce-
dures exist for deleting productions from long-term memory.

Working memory provides a store of elements that represent the cur- k

rent situation. This mechanism provides the nexus of information process-
ing in Soar. It integrates inputs from the external world, information in
productions stored in long-term memory, and results of Soar’s internal
decision processes. Working memory is not limited in capacity or time.
Soar posits a third type of memory, preference memory, which stores sugges-
tions or imperatives about current operators (Laird, Congdon, & Coulter, 1999).
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Preferences are encoded according to fixed semantics, a process that supports
the decision stage in Soar information processing and problem solving,

Soar developers extended its capabilities by devising an explicit model
of team goals and plans that are shared among team members. The result-
ing model, called a shell for teamwork (STEAM), represents an integration
of team with individual knowledge (Tambe, 1996). STEAM has been used
to model coordination among team members in military units and as the
underlying method for improving teamwork in RoboCup *97, an interna-
tional competition to test multiagent systems using soccer as a simulation

: test bed (Tambe et al., 1999).

- An explicit goal of the Soar research program is that the model demon-
strate its ability to represent a variety of intelligent behaviors (e.g., Rosen-

~bloom et al,, 1991), including toy tasks (e.g., puzzles and games such as
- Tower of Hanoi and Cryptarithmetic) and more practical domains, such

as knowledge-intensive problems in medical diagnosis (Neomycin-Soar),
software design (Designer-Soar), and tactical communications (NL-Soar),
and learning in complex expert systems (R1-Soar).

- Soar has provided creditable models of performance in a variety of

‘complex simulations. Furthermore, its relatively simple architecture fits an

impressive range of task domains. Whereas one might argue that ACT-R
is more popular among academic users, Soar is more prevalent in opera-
tional applications.

Discussion and Conclusions

Simulation is widely and increasingly used to assess the performance and
competence of individuals and teams. Games, viewed here as a subset of
simulation, are similarly considered as a source of assessment. The intrin-
sically motivating characteristics of games make them attractive as means
to assess mass audiences, as for example a way to assess the preparation
of the national voting public to judge policies, legislation, and regulations
concerning technology (National Academy of Engineering, in press). Interest
in the use of games and simulations in assessment may well increase as
techniques develop for the continuous and unobtrusive modeling of abili-
ties from the communication, keyboard, and clickstream interactions of
learners and users with technology-based systems (Fletcher, 1999, 2006).

Problems remain, of course. What are the psychometric properties of
games and simulations? Is one pass through a game or simulation sufficient
for assessment, or are many needed for reliable, valid, precise measure-
ment? How should we identify critical events and decisions? How should
we weigh data obtained from the various modes of interactions used in
simulations and games? There are more questions of this sort.
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Researchers are making progress in this area (e.g., O'Neil, Allred, &
Dennis, 1997). One promising approach is based on Mislevy’s evidence-
centered design (ECD) (Mislevy, Almond, & Lukas, 2003). In ECD, capa-
bilities are identified for some subject area and organized into a graphical
framework. ECD then shows how to connect the responses of test-takers
working in a complex simulated environment to this framework. Bennett
et al. (2003) provided an example of how ECD might be used to assess
scientific inquiry skills in a simulation environment. Readers are enthusi-
astically referred to more complete discussions of these matters by other
authors in this book.

Representing human cognitive processes and capabilities should be a
key enabler in developing the techniques for assessing problem solvingand
other cognitive capabilities through the use of games and simulations. The
tools, techniques, and frameworks provided by the 19 models discussed
by Morrison (2003) and summarized in this chapter provide substantial
capabilities, but work remains to be done. S

Both the sighificance and complexity of representing cognitive processes
in a credible and practicable manner have been presented to the modeling
and simulation community by their own practitioners as a “grand chal-
lenge” (Ciancarini et al., 2002).

Giordano, Reynolds, and Brogan (2004) prepared a list of elements
required for human behavior representation and identified those that, in
their judgment, “cannot be achieved in a tractable manner ... or there is
no known way to accomplish them” (p. 915). Their focus was on the capa-
bilities needed to pass Turing’s famous Imitation Game, also known as the
Turing test (Turing, 1950). Among the items they identified as unachiev-
able are adapting behavior to dynamic scenarios; pattern recognition cou-
pled with appropriate decision making; and complex cognition, reasoning,
and learning.

Assessment of problem-solving ability requires an ability to model
human cognition — as suggested in this chapter. A fruitful source of these
models, again as suggested, is in the efforts to imbue games and simulations
with cognitively realistic participants. But, our cognitive modeling goals
need not be as ambitious as those targeted by Giordano et al. (2004) for
passing the Turing test. To what degree of completeness, then, and which
characteristics must cognitive models possess if we wish to obtain adequate
assessments of problem-solving ability from games and simulations?

Assessment is usually and properly performed for a reason, usually to
inform a decision, for instance, to select individuals for employment, clas-
sify individuals into specific job categories, guide progress of individuals
and teams toward achieving instructional objectives, certify the readiness
ofindividuals or teams to perform specific tasks, and so forth. The adequacy
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of an assessment must depend on its purpose. The same may be said for the
adequacy of the underlying model of cognition used in the assessment.

There is evidently a rich assortment of models and modeling capa-
bilities to choose from and adopt in developing assessment of all sorts,
including, of course, assessment of problem-solving processes and abili-
ties. Principles for making these choices and ways to adopt them are, we
suggest, proper topics for research and development on the use of games
and simulations for assessment.
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